Понедельник, 29.04.2024, 23:39
Приветствую Вас Гость | RSS
Категории раздела
Торсионные поля: теория и практика. [14]
Понятия Энергия и Информация в структуре Вселенной и структуре Человека.
Человек с точки зрения биоэнергета. [0]
Три составные части природы человека: - энергия; - психика; - физиология. Чакры, каналы, плотное и тонкие тела. Любое нарушение равновесия в этих структурах ведет за собой неприятные, а иногда и трагические последствия в судьбе и отражаетя на здоровье человека.
Человек как часть Вселенной. [0]
Человек - часть Вселенной. Но не нужно понимать Вселенную как космос, где есть звезды, планеты и галлактики. Человек, как часть Вселенной, неразрывно связан со Вселенной и с космосом. Некоторые труды Русских философов - космистов, приведенные здесь, позволяют понять многе, что происходит в человеке и с человеком. Все это - законы Вселенной, все это - влияние процессов, происходящих в космосе, и все это - без мистики и мистицизма.
Целительство, как оно есть на самом деле. [0]
"Целитель" - это человек, помогающий обрести цельность и цель другому человеку. То есть делающий человека целостным как внути него самого, так и "снаружи".
Поиск
Статистика

Онлайн всего: 1
Гостей: 1
Пользователей: 0
Форма входа

Каталог статей

Главная » Статьи » Научные основы биоэнергетики. » Торсионные поля: теория и практика.

Теория физического вакуума.
Пространство событий. Западный метод познания природы начинается с того, что выбирается своеобразная "точка зрения" исследователя - система наблюдения или система отсчёта. В трёхмерном пространстве механики Ньютона система отсчёта представляет собой три взаимно перпендикулярных направленных отрезка прямой линии с общим началом О (см. рис. 1). Изучая, например, траекторию летящего камня, брошенного параллельно земле, наблюдатель измеряет в разные моменты времени расстояния от начала О до летящего камня М. В результате этого эксперимента наблюдатель получает набор расстояний r в каждый момент времени. Рис. 1. Траектория камня, брошенного горизонтально поверхности земли. Наблюдатель измеряет расстояние r до камня в различные моменты времени t. Полученное множество относительных координат двух систем отсчёта содержит всю информацию о движении камня. Анализируя полученные данные, он обнаруживает, что траектория камня описывается в данной системе наблюдения уравнением параболы.
Всякая реальная система отсчета связана с телом отсчета, в качестве которого может быть выбран любой физический объект - твердое тело, элементарная частица, волна света и т.д. Часто систему отсчета связывают со стенами лаборатории, в которой идет эксперимент. В нашем конкретном случае одна система отсчета связана с поверхностью Земли, а другая с брошенным камнем. Поэтому данные наблюдателя представляют собой множество относительных координат двух систем отсчета. Это все что мы имеем в любом физическом эксперименте! Предположим, что мы изучаем движение заряженной частицы в электромагнитном поле. Опять вводятся две системы отсчета, одна из которых связана с лабораторией, а другая с заряженной частицей. Измеряя относительные координаты двух этих систем отсчета в различные моменты времени, мы получаем множество относительных координат, содержащее всю информацию об электромагнитном взаимодействии поля и частицы. Множества относительных координат, полученные в различных опытах, физики называют пространством событий, поскольку каждая точка этого пространства описывает некоторое элементарное событие. Таким образом, изучая гравитационные, электромагнитные, ядерные или какие-либо другие физические взаимодействия, мы в самой основе имеем дело с пространством событий изучаемого явления.
Из наших рассуждений следуют, по крайней мере, два вывода:
1. Любой физический эксперимент прямым или косвенным образом сводится к измерению относительных координат различных систем отсчета.
2. Физика - это теория относительности, изучающая природу посредством анализа пространства событий.
Исследуя пространство событий какого-либо явления, физик, создавая теорию явления, может использовать два крайних подхода:
а) либо, на основе анализа пространства событий, попытаться угадать уравнения, которые описывают явление, так, как это сделал Ньютон при создании своей теории гравитации (индуктивный подход);
б) либо проанализировать общие геометрические свойства пространства событий и получить физические уравнения из этого анализа, так, как это сделал Эйнштейн при создании общей теории относительности (дедуктивный подход).
Уравнения теории физического вакуума были получены дедуктивным путем. Для этого был выбран наиболее общий класс систем отсчета, который известен в настоящее время в физике, а затем исследованы геометрические свойства соответствующего пространства событий.
В настоящее время в физике известно пять классов систем отсчета:
1) инерциальные, которые движутся друг относительно друга с постоянной скоростью и без вращения;
2) ускоренные локально инерциальные первого рода, которые движутся ускоренно друг относительно друга без вращения, но локально ничем не отличаются от инерциальных систем (например, система отсчета, связанная со свободно падающим лифтом);
3) ускоренные локально инерциальные второго рода, которые движутся ускоренно относительно друг друга с вращением, но локально ничем не отличаются от инерциальных систем (например, система отсчета, связанная с центром масс однородного вращающегося диска);
4) ускоренные локально неинерциалъные (например, система отсчета, связанная с ускоряемой ракетными двигателями ракетой);
5) ускоренные конформные (такие системы связаны с физическими объектами, меняющими свои физические характеристики - массу, заряд и т. д. с течением времени).
Для каждого класса систем отсчета существует собственное, присущее только этому классу, пространство событий. Зная геометрические свойства пространства событий, можно найти, например, уравнения движения одной системы отсчета относительно другой. Поскольку система отсчета связана с каким-либо физическим телом, то мы сразу находим уравнения движения данного тела. Ясно, что ускоренное движение систем отсчета вызвано физическим взаимодействием тела отсчета с полем, в котором оно движется. Поэтому анализ пространства событий в этом случае позволяет найти не только уравнения движения тел отсчета, но и получить уравнения поля, под действием которого движется тело отсчета. Тонкоматериальный мир.
После того, как Абсолютным «Ничто» - Творцом созданы планы первичного вакуума и вакуума, из первичного вакуума рождается тонкоматериальный мир, представленный первичными торсионными полями. Анализ уравнений первичных торсионных полей показывает, что тензор энергии-импульса этих полей равен нулю, хотя сами поля отличны от нуля. Поля с нулевым тензором энергии-импульса не искривляют пространство и несут информацию только о вращательных свойствах тонкой материи. В общем случае «вращательная» информация может менять величину и направление вращения собственного углового момента материальных объектов без изменения траектории их центра масс.
На основе анализа экспериментальных данных А. Акимовым была предложена фитонная модель первичного физического вакуума (см. рис 16). Фитоны представляют собой скомпенсированные право-левые первичные вихри, заполняющие весь первичный вакуум. Спонтанно или под внешним воздействием фитоны распадаются на право и лево ориентируемые первичные спины, вызывая спиновую поляризацию вакуума. Решения уравнений первичного вакуума показывают, что в природе существуют объекты, у которых нет ни массы, ни заряда, а есть только спин. Из-за отсутствия потенциальной энергии взаимодействия у этих объектов их проникающая способность оказывается значительной.
В современной физике известна элементарная частица нейтрино, которая (теоретически) подобно первичному торсионному полю, обладает только спином. Экспериментально установлена высокая проникающая способность нейтрино. Рис. 16. Фитонная модель первичного физического вакуума, предложенная А. Акимовым. Известно, что нейтрино может пройти сквозь Землю без взаимодействия. Отличие нейтрино от первичного торсионного поля состоит в том, что нейтрино представляет собой разновидность вторичного торсионного поля, которое создается грубой материей, обладающей массой, зарядами и т.д. Считается, что нейтрино обладает энергией, правда однозначно не установлено какой энергией, действительной или мнимой, оно обладает. Если предположить, что энергия нейтрино мнимая (существуют эксперименты, указывающие на это), то тогда скорость распространения нейтрино должна превышать скорость света. Причем, чем меньше мнимая энергия нейтрино, тем больше его скорость. В пределе, когда мнимая энергия обратится в нуль (при отличном от нуля импульсе) скорость нейтрино должна устремиться к бесконечности.
У первичного торсионного поля энергия и импульс равны нулю с самого начала, поэтому говорить о скорости распространения этого поля, вообще говоря, не имеет смысла. Если такое поле появляется, то оно накрывает сразу все пространство. Оно как бы сразу есть везде и всегда.
Экспериментально обнаружена способность геометрических поверхностей (в первом приближении вне зависимости от материала, из которых они изготовлены) поляризовать вакуум по спину. Например, достаточно в вакуум поместить конус, как произойдет поляризация вакуума, изображенная на рис. 17. Рис. 17. Спиновая поляризация первичного вакуума, создаваемая конусом. Пунктирными линиями обозначены диаграммы направленности статических торсионных полей. Сверху над вершиной конуса образуется правое статическое торсионное поле SR, а внутри конуса и ниже его основания левое поле SL. В точках а и б, делящих высоту конуса h на три равных части, наблюдается повышенная интенсивность поля.
Свойство геометрических поверхностей вызывать торсионную поляризацию вакуума получило название эффекта форм. Этот эффект представляет собой, по-видимому, одно из проявлений тонкоматериального мира. Он широко известен заинтересованным исследователям. Более того, существуют различные устройства и методы, использующие эффект форм, запатентованнные в ряде стран.
Категория: Торсионные поля: теория и практика. | Добавил: Olge (10.01.2011)
Просмотров: 978 | Рейтинг: 0.0/0
Всего комментариев: 0
Имя *:
Email *:
Код *: